Ask-Me-Why: Model-agnostic Explainability Framework Jonathan Lai and Hegler Tissot (Advisor)

PROBLEM & MOTIVATION

The Challenge

Current explainability methods require access to model internals. What if we could explain ANY model's predictions using only the data?

The Black Box Challenge

Healthcare: Why was this patient diagnosed with condition X?

Finance: Why was this loan application rejected?

Law: Why was this case flagged as high-risk?

Current Limitations

Method	Limitation	
SHAPRequires model access; Different models \rightarrow different explanations		
LIME	Model-specific; Unstable for mixed data types	
XGBoost	Tied to one model; Often global rather than instance-specific	

OBJECTIVES

- Explain ANY model without access using neighborhood analysis - Identify instance patterns & provide complementary insights to SHAP/LIME/XGBoost
- Enable regulatory compliance for healthcare, finance, law
- 3. Support mixed data types & scale efficiently
- Empower domain experts with interpretable explanations
- 5. Provide model prediction explanations

METHODS

Key Insight

Similar instances in embedding space should behave similarly. When they don't, those differences explain the prediction.

Figure 1: Local vs. Global

Core Innovation

Weighted Cosine Difference (WCD): $WCD(f, x) = CosDiff(P_{local}, P_{global}) \times Uniqueness(x_f)$

Where:

P_local = Feature distribution in k-nearest neighbors

$$\operatorname{CosDiff} = 1 - \frac{P_{loc}}{||P_{loc}||}$$

$$\text{Uniqueness}_{\text{cat}}(x_f) =$$

$$\text{Uniqueness}_{\text{cont}}(x_f)$$

Where:

x_f = instance's feature value

µ_local = neighborhood mean

 σ_{local} = neighborhood standard deviation Framework:

 $\square Data \rightarrow \textcircled{O} Embed \rightarrow \bigcirc Analyze \rightarrow \textcircled{O} Model \rightarrow \bigcirc Explain$ **Algorithm Pipeline:**

- Embed instances using unsupervised methods Build KD-Tree index for neighbor search 2. Find k-nearest neighbors in embedding space 3. Compare local vs global feature distributions 4. Weight by instance uniqueness \rightarrow WCD score

- Train model on same instances 6.
- Provide model explanations 7.

Technical Details

Feature Type	Missing Value Handling	Me
Continuous	Treated as "Missing" bin; excluded from numeric bins	• A 10 • L as • E
Categorical	Treated as "Missing" category	• F • C

Datasets

Dataset	Instances	Features	Task	Characteristics
Mushroom	8,124	22 categorical	Binary	Colors & Structure
Genetic Disorder	22,383	6 cont, 36 cat	Multi-label	Age & lab patterns

Drexel University

n entire dataset $|P_{\text{global}} \cdot P_{\text{global}}|$ $1 - P_{\text{local}}(x_f)$

 $x_f - \mu_{\text{local}}$ $\sigma_{\rm local}$

ethods

- Adaptive binning (0.25 σ , 0.5 σ , σ, 2σ, 4σ) Linear interpolation for bin signment Distance-weighted aggregation
- Frequency-based distributions Distance-weighted counting

Neighborhood Search:

KD-Tree indexing: $O(n \log n)$ k ∈ {16, 32, 64, 128, 256, 512, 1024} Max radius: 2.0 (Euclidean) Distance weighting:

$$w_i = \frac{r_{\max} - d_i}{r_{\max}}$$

d_i = distance to neighbor **r max** = maximum radius **Comparison Methods: SHAP** (TreeExplainer) - Shapley value approximation **LIME** (Tabular) - Local linear surrogate **XGBoost** - Global feature importance Validation Approach: 2 diverse datasets with different characteristics Spearman rank correlation for method comparison

Figure 2. Local vs. Global White-Blood-Cell Distributions

feature	Rank	cos_diff		weighted_cos_diff_no rmalized
White Blood cell count	1	0.41886	1.931932	0.33363

White Blood Cell count "neighborhood" shifts as we vary the number of nearest neighbors (k). The right-hand bar is the fixed global distribution.

Feature Ranking Comparison:

 Table 1: Mushroom Dataset (128 neighbors)

Method Comparison	Spearman ρ	Interpretation
SHAP	0.016	Weak positive
LIME	0.450	Moderate positive
XGBoost	0.186	Weak positive

Metho SHAP LIME

XGBo

1. Mushroom Instance #3900:

- 2. Weighted Cosine Difference highlights features both distributionally distinct and value-extreme. 3. Complements SHAP, LIME & XGBoost by surfacing different but meaningful signals and comparing feature rankings.
- search.
- 4. Scales to mixed data & large datasets via KD-Tree k-NN 5. Provides visualization tools for further analysis

4774.

Table 2: Genetic Disorder (512 neighbors)

od Comparison	Spearman p	Interpretation		
D	0.128	Weak positive		
	0.121	Weak positive		
oost	0.005	Neutral		

Model Explanations

(#1 XGBoost: Odor)

Prediction: EDIBLE \checkmark (99.97% confidence)

Top Features (ASK·Me·Why):

- Gill-color (BROWN)
- Stalk-color below ring (GRAY)
- Cap-color (BROWN)

2. Patient PID0x7005:

Prediction: Mitochondrial disorder \checkmark (67.9%)

Top Features (ASK·Me·Why):

- Mother's age (33)
- Patient age (0) 2.
- Father's age (52)

CONCLUSIONS

1. Ask·Me·Why produces per-instance explanations without model access.

REFERENCES

- Ribeiro M.T., Singh S., Guestrin C. "Why Should I Trust You? Explaining the Predictions of Any Classifier." KDD '16, pp. 1135–1144.
- Lundberg S.M., Lee S.-I. "A Unified Approach to Interpreting Model Predictions." NeurIPS '17, pp. 4765-
- Chen T., Guestrin C. "XGBoost: A Scalable Tree Boosting System." KDD '16, pp. 785–794.
- Linardatos P., Papastefanopoulos V., Kotsiantis S. "Explainable AI: A Review of Machine Learning
- Interpretability Methods." Entropy 23(1): 18, 2021.